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A New Fuzzy Version of Euler’s Method for Solving Differential 
Equations with Fuzzy Initial Values

 (Versi Baru Kaedah Euler Kabur untuk Menyelesaikan Persamaan 
Pembezaan dengan Nilai-Nilai Awal Kabur)

M. Z. AHMAD* & M. K. HASAN

ABSTRACT

This paper proposes a new fuzzy version of Euler’s method for solving differential equations with fuzzy initial values. Our 
proposed method is based on Zadeh’s extension principle for the reformulation of the classical Euler’s method, which 
takes into account the dependency problem that arises in fuzzy setting. This problem is often neglected in numerical 
methods found in the literature for solving differential equations with fuzzy initial values. Several examples are provided 
to show the advantage of our proposed method compared to the conventional fuzzy version of Euler’s method proposed 
in the literature.
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ABSTRAK

Kertas ini mencadangkan satu versi baru kaedah Euler kabur untuk menyelesaikan persamaan pembezaan dengan nilai 
awal kabur. Pendekatan yang digunakan adalah berasaskan kepada prinsip perluasan Zadeh dengan mengambil kira 
masalah kebergantungan yang wujud dalam kaedah Euler klasik. Masalah ini sentiasa diabaikan oleh penyelidik-penyelidik 
dalam menyelesaikan persamaan pembezaan dengan nilai awal kabur. Beberapa contoh diberikan untuk menunjukkan 
kelebihan kaedah yang dicadangkan dan perbandingan juga dilakukan dengan versi kabur konvensional.

Kata kunci: Kaedah Euler; nilai awal kabur; pengoptimuman; set kabur

INTRODUCTION

In modelling of real physical phenomena, differential 
equations play an important role in many areas of 
discipline, namely in economics, science and engineering. 
Many experts in such areas extensively use differential 
equations in order to make some problems under study 
more understandable. In many cases, information about 
the physical phenomena involved is always pervaded 
with uncertainty. According to Diniz et al. (2001), the 
uncertainty can arise in the experiment part, data collection, 
measurement process as well as when determining the 
initial values. These are patently obvious when dealing 
with “living” material, such as soil, water and microbial 
populations (Ahmad & De Baets 2009). Classical 
mathematics, however, cannot cope with this situation. 
Therefore, it is necessary to have some mathematical 
apparatus in order to understand this uncertainty. Various 
theories exist for describing this uncertainty and the most 
popular one is fuzzy set theory (Zadeh 1965).
	 Today, the study of differential equations with 
uncertainty is rapidly growing as a new area in fuzzy 
analysis. The terms such as “fuzzy differential equation”, 
“fuzzy differential inclusion”, and “set differential 
equation” are used interchangeably in referring to 
differential equations with fuzzy initial values or fuzzy 

boundary values or even differential equations dealing 
with functions on the space of fuzzy numbers (Buckley & 
Feuring 2000;  Hüllermeier 1997; Kaleva 1987; Seikkala 
1987; Laksmikantham 2004). 
	 In numerical analysis, many methods have also 
been investigated. One of the earlier contributions was 
demonstrated by Ma et al. (1999). The authors proposed 
a fuzzy version of Euler’s method to approximate the 
solution of fuzzy differential equations. First, the authors 
transformed a fuzzy differential equation by two parametric 
ordinary differential equations and then solved by fuzzy 
Euler’s method. In this paper, we derived a new fuzzy 
version of Euler’s method by taking into account the 
dependency problem among fuzzy sets. This problem 
is omitted in the numerical method proposed by Ma et 
al. (1999). According to Bonarini and Bontempi (1994), 
considering the non-dependency problem in fuzzy 
computation will lead to repetition of some numerical 
computations. Then, there exists possible errors and finally 
the errors may produce approximations that are wider than 
the correction. This is true since the preliminary results 
conducted by Ahmad and Hasan (2010) have shown 
that the solution of fuzzy differential equations obtained 
by using the method proposed by Ma et al. (1999) has 
overestimation in computation. 
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BASIC CONCEPTS

In this section, the basic idea of fuzzy sets will be introduced 
and some important concepts will be explained.

FUZZY SETS

According to Zadeh (1965), a fuzzy set is a generalisation 
of a classical set that allows membership function to take 
any value in the unit interval [0, 1]. The formal definition 
of a fuzzy set is as follow:

Definition 1: Let U be a universal set. A fuzzy set A in U 
is defined by a membership function A(x) that maps every 
element in U to the unit interval [0, 1]. 

A fuzzy set A in U may also be presented as a set of ordered 
pairs of a generic element x and its membership value, as 
shown in the following equation:

	 A = {(x, A(x)) | x ∈ U}.	 (1)

Definition 2: Let A be a fuzzy set defined in U. The support 
of A is the crisp set of all elements in U such that the 
membership function of A is non-zero, that is,

	 supp (A) = {x ∈ U | A(x) > 0}.	 (2)

Definition 3: Let A be a fuzzy set defined in U. The core 
of A is the crisp set of all elements in U such that the 
membership value of A is 1, that is,

	 core (A) = {x ∈ U | A(x) = 1}.	 (3)

Definition 4: Let A be a fuzzy set defined in ℜ. A is called 
a fuzzy interval if

1.	 A is normal, that is there exists x0 ∈ ℜ such that 
A(x0) = 1;

2.	 A is convex, that is for all x, y ∈ ℜ and 0 ≤ λ ≤ 1,it 
holds that

	 A(λx + (1 – λ)y) ≥ min(A(x), A(y));

3.	 A is upper semi-continuous, that is for any x0 ∈ ℜ,  it 
holds that

	 A(x0)≥  A(x);

4.	 [A]0 =  is a compact subset of ℜ.

Definition 5: Let A be a fuzzy interval defined in ℜ. The 
α – cut of A is the crisp set [A]0 that contains all elements 
in ℜ such that the membership values of A is greater than 
or equal to α, that is

	 [A]α = {x ∈ ℜ| A(x) ≥ α},  α ∈ (0,1].	 (4)

For a fuzzy interval A, its α – cuts are closed intervals in 
ℜ and we denote them by

	 [A]α = [a1
α, a2

α],  α ∈  (0,1].	 (5)

Definition 6: A fuzzy interval A is called a triangular fuzzy 
interval if its membership function has the following 
form:

	 	 (6) 

and its α – cuts are simply 

	 [A]α = [a + α(b – a), c – α(c – b)],  α ∈ (0,1].	 (7)

This definition asserts that the triangular fuzzy interval A is 
defined by three numbers a < b < c, where the core of A is  
b and its support is the interval (a, c). Figure 1 shows the 
example of triangular fuzzy interval. In this paper the set 
of all triangular fuzzy intervals will be denoted by F(ℜ).

THE EXTENSION PRINCIPLE

The idea of the extension principle is easy to understand. 
Let f be a function that maps from X to Y. The extension 
principle provides a mechanism to transform a fuzzy set 
defined in X to a fuzzy set defined in Y.
	 Let F(X) and F(Y) be the sets of all fuzzy sets defined in 
X and Y, respectively and f : X→Y be a continuous function. 
The function f induces a mapping f : F(X)→F(Y)  such that 
if A is a fuzzy set in X, then its range under f is a fuzzy set 
B = f (A) whose membership function is expressed as in 
the following equation (Zadeh 1975a, Zadeh 1975b and 
Zadeh 1975c):

Figure 1. The triangular fuzzy interval A
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	 	 (8)

where

	 f -1(y) = {x ∈ X | f (x) = y} (inverse of f )

Román-Flores et al. (2001) have shown that if f : X→Y  is a 
continuous function, then f : F(X)→F(Y) is a well-defined 
function, and

	 [f (A)]α = f ([A]α),	 (9)

for all α ∈ [0,1] and A ∈ F(X).

FUZZY INITIAL VALUE PROBLEMS

In this section, we first consider the following ordinary 
differential equation:

	 	 (10)

where f : [t0, T] × ℜ→ℜ is a continuous function defined 
on [t0, T] with T > 0 and x0 ∈ ℜ. Suppose that the initial 
condition in (10) is uncertain and modelled by a fuzzy 
interval, then we have the following fuzzy initial value 
problem: 

	 	 (11)

where f : [t0, T] × F(ℜ) → F(ℜ)  is fuzzy-valued function 
defined on [t0, T] with T > 0 and X0 ∈ F(ℜ).  To interpret 
the connection between (10) and (11), we refer to 
Mizukoshi et al. (2007) and Hüllermeier (1997). 

INTERPRETATION UNDER ZADEH’S EXTENSION PRINCIPLE

Let U be an open set in ℜ such that there exist a solution 
x(., x0) of (10) with x0 ∈ U on the interval [t0, T] and for all 
t ∈ [t0, T], x(t, .) is continuous in U. Then we can define:

	 x(t, x0) : U → ℜ
	
which is the unique solution of (10). If x0 replace by X0, 
which is a fuzzy interval, then from Zadeh’s extension 
principle we have:

	 x(t, X0) : F(U) → F(ℜ)
	
which is the unique fuzzy solution of (11).

INTERPRETATION UNDER HÜLLERMEIER’S APPROACH

In agreement with Hüllermeier (1997), the differential 
equation in (11) can be interpreted as follow:

	 	 (12)

where f : [t0,T] × ℜ → F(ℜ) is a real-valued function 
defined on [t0,T] with T > 0 and β ∈ (0,1]. For every 
β ∈ (0,1]we say that xβ : [t0,T] → ℜ is the β -solution 
of (12) if it is absolutely continuous and satisfies (12) 
almost everywhere on [t0,T] with T > 0. Let Mβ be the 
set of all β -solution of (12) and we define the attainable 
sets as:

	 Aβ(t) = {xβ(t) | xβ(.) ∈ Mβ ,

which is the β -cut of fuzzy attainable set A(t). Hence, the 
fuzzy attainable set is the solution of (11). Chalco-Cano 
and Román-Flores (2008) have proven that the solution 
obtained by Zadeh’s extension principle coincides with 
the solution obtained by Hüllermeier’s approach.

A NEW FUZZY VERSION OF EULER’S METHOD

First, we recall Taylor’s Theorem in order to derive the 
classical Euler method. Suppose that x(t), the unique 
solution of (10) have two continuous derivatives on the 
interval [t0,T], so that for each j = 0,1,2,…, N – 1, 
	 		

(13)

for some numbers ξj ∈ (tj, tj+1). By setting h = tj+1 – tj,  we 
have that 

	 	 (14)

and, since x(t) satisfies the problem (10), we have 

	 	
(15)

By truncating the reminder term and denoting xj � x(tj), 
then we have the following Euler method for the problem 
(10): 
	

	
xj+1 = xj + hf (tj, xj),	 (16)

for each j = 0,1,2,…, N – 1. 
	 In order to extend the classical Euler method (16) in 
fuzzy setting, we need to take into account the dependency 
problem among fuzzy sets. First, let us consider the 
following situation: 
	

	 M(h, t,x) = x+ hf (t, x).	 (17)

If x ∈ F(ℜ),  then (17) can be extended in fuzzy setting 
as follow: 

	 	 (18)
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	 Since (18) has very complicated structure, then we can 
solve it by using the α – cut of fuzzy inteval X. Let [X]α = 
[x1

α, x2
α] be the α – cuts of X for all α ∈ (0,1],  then (18) 

can be computed as follows: 

	 	 (19)

	 By using this idea, we calculate the Euler method (18) 
as follows: 

	

	

	 To solve the minimum and maximum problems, we 
adopt a computational method proposed by Ahmad et al 
(2010). The method is described in the next section.

THE COMPUTATIONAL METHOD

Let X = (a,b,c)  be a triangular fuzzy interval. The α – cut 
of  X is denoted by [X]α = [x1

α, x2
α] for α ∈ (0,1]. First, we 

discretise α in the form α0 < α1 < … < αn-1 < αn,  where  
α0 = 0 and αn = 1. The discretised α are equally spaced, 
that is α1 = α0 + i∆h, for i = 0,1,2,…, n and ∆h =  
In this study, ∆h is called the discretisation spacing. After 
discretisation, we have a set of α with (n + 1) elements: 

	 α = {α0, …, αi, …, αn}.	 (20)

	 This leads to a set I of (n + 1) closed intervals: 

	 	 (21)

	 For the different α – cuts of X the following property 
holds: 

	 [X]αi+1 ⊆ [X]αi,   ∀αi,αi+1∈ [0.1] with αi ≤ αi+1.	 (22)

for i = 0,2,…, n – 1. From (22), it is clear that the α – cuts 
of A at αi+1 is subset of the α – cuts of A at αi (see Figure 
2). 
	 Since this property true for all α ∈ [0,1], the α – cuts 
of X can be constructed as the union of sub-intervals as 
shown in the following equation: 
	 	

(23)

	 In order to find the numerical solution of (11), we 
compute    B = m(h, t, X) at each level of αi for i = 0,1,2,…, 
n   according to the following equations: 

		

		

	 (24)
 

	
	 (25) 

	 Here b1
αi and b2

αi are the lower and upper bounds of B, 
respectively at αi for i = 0,1,…, n. In order to interpolate 
the points (b1

αi, αi) and (b2
αi, αi) for all i = 0,1,…, n,  we 

use linear splin interpolation. Finally, a fuzzy interval B 
is obtained. This process is repeated for all tj ∈ [t0, T] for 
j = 1,2,…, N – 1. 

NUMERICAL EXAMPLES

In this section, we provide two numerical examples to show 
the effectiveness of our proposed method compared to the 
conventional fuzzy version of Euler’s method proposed by 
Ma et al. (1999).

Example 1: Consider the following differential equation:

	 u'(t) = u(1 – 2t),  t ∈ [0,2]

and the fuzzy initial value is given by:

	

The exact solution is (see Figure 3):

	

Figure 2. α – discretisation of a fuzzy interval

X(x)

x
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	 To get the approximate solution, we divide the interval  
[0,2] into 20 equally spaced subintervals. Then, we proceed 
with the numerical method proposed in this paper. The 
obtained results are plotted in Figure 4. From the graph, 
we can see that the approximate solution converges to the 
exact solution. The local errors between the approximate 
and exact solutions at tN = 2 are given in Table 1.

	 In contradict to the method proposed by Ma et al. 
(1999), the approximate solution does not converge to the 

exact solution (see Figure 5). It is diverging as t increases. 
This shows that the method proposed by Ma et al. (1999) 
has overestimation in computation. This is always the case 
when we consider the same fuzzy interval as independent 
in fuzzy interval computations (see Equation 17). 

	 Next, we study a non-linear differential equation with 
fuzzy initial value.

Table 1. The local errors at tN = 2

α Error Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-0.0644
-0.0611
-0.0576
-0.0539
-0.0499
-0.0456
-0.0407
-0.0353
-0.0288
-0.0204
0.0000

-0.0677
-0.0642
-0.0605
-0.0566
-0.0524
-0.0478
-0.0428
-0.0371
-0.0303
-0.0214
0.0000

0.0033
0.0031
0.0029
0.0027
0.0025
0.0022
0.0021
0.0018
0.0015
0.0010
0.0000

0.0644
0.0611
0.0576
0.0539
0.0499
0.0456
0.0407
0.0353
0.0288
0.0204
0.0000

0.0677
0.0642
0.0605
0.0566
0.0524
0.0478
0.0428
0.0371
0.0303
0.0214
0.0000

0.0033
0.0031
0.0029
0.0027
0.0025
0.0022
0.0021
0.0018
0.0015
0.0010
0.0000

Figure 3. The exact solution

Figure 4. The approximate solution with h = 0.1 and N = 20

Figure 5. The approximate solution obtained by using the 
method proposed by Ma et al. (1999) with h = 0.1 and N = 20

Example 2. Consider the following non-linear differential 
equation:

	 u'(t) = cos(tu),   t ∈ [0,3]

and the fuzzy initial value is given by:

	

	 Since the exact solution cannot be found analytically, 
we need a numerical method to approximate its solution. 
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As in the Example 1, we divide the interval [0, 3]  into 20 
equally spaced subintervals and proceed with the numerical 
method proposed in this paper. The final results are 
depicted in Figure 6. From the graph, we can see that the 
approximate solution has a periodic solution as t increases. 
In contrast, applying the numerical method proposed by Ma 
et al. (1999) the approximate solution again has diverging 
solution (see Figure 7).

	 Now the question arises: which one of the approximate 
solutions represents the differential equation above? The 

produced better solution.

CONCLUSION

In this paper, we have studied the numerical solution 
of differential equations with fuzzy initial values. By 
taking into account the dependency problem in fuzzy 
computation, we proposed a new version of Euler method, 
which is a generalisation of the conventional one. In 
order to show the capability of the proposed method, we 
conducted several numerical examples including linear 
and linear differential equations with fuzzy initial values. 
Final results showed that the numerical method proposed 
in this paper produced better solutions compared to the 
numerical method proposed in the literature. 
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